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Abstract. We give a new proof of the Caffarelli contraction theorem, which states that the Brenier

optimal transport map sending the standard Gaussian measure onto a uniformly log-concave prob-
ability measure is Lipschitz. The proof combines a recent variational characterization of Lipschitz

transport map by the second author and Juillet with a convexity property of optimizers in the dual

formulation of the entropy-regularized optimal transport (or Schrödinger) problem.

1. Introduction

The aim of the paper is to give a new proof of the celebrated Caffarelli contraction theorem [3, 4],
which states that the Brenier optimal transport map sending the standard Gaussian measure on Rd,
denoted by γd in all the paper, onto a probability measure ν having a log-concave density with respect
to γd is a contraction. More precisely, let us recall the generalized version of Caffarelli’s theorem:

Theorem 1 (Caffarelli [3, 4]). For any probability measures µ and ν respectively of the form µpdxq �
eV pxqγdpdxq and νpdxq � e�W pxqγdpdxq with V and W convex functions, and further assuming µ has
a finite second moment and ν is compactly supported, there exists a continuously differentiable and
convex function φ : Rd Ñ R such that ∇φ is 1-Lipschitz and ν � ∇φ#µ.

Caffarelli’s original result was only stated for the important particular case where µ is the Gaussian
measure γd (i.e. V � 0), but his proof readily extends to this more general setting [32]. Note that
the assumption that ν is compactly supported can be removed via approximation. See [43, Corollary
5.21] for details. Note that in all the paper we allow convex function to take the value �8.

This result plays an important role in the Functional Inequality literature, as it enables to transfer
geometric inequalities such as Log-Sobolev or Gaussian Isoperimetric inequalities from the Gaussian
measure to probability measures with a uniformly log-concave density. See [10, 25, 26, 38] for some
applications of Theorem 1 to functional inequalities. It has also been used to derive deficit estimates
in functional inequalities [14, 11]. Crucial for such applications is the dimension-free nature of the
bound, to preserve the dimension-independent estimates that arise from these functional inequalities,
and which are at the center of their applications in statistics for example. More recently, there have
been some extensions, such as dimension-free Sobolev estimates [31, 32] and variants for compactly-
supported perturbations of the Gaussian measure [7].

Caffarelli’s original proof relies on the formulation of Brenier maps as solutions to a Monge-Ampère
equation, and uses maximum principle-type estimates. In particular, it does not actually exploit the
fact that ∇φ is an optimal transport map. This is also the case for the other proofs [32, 29]. Our
purpose here is to provide a different proof that does directly exploit ideas from optimal transport
theory.
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In this paper, we develop an approach based on a variational characterization of Lipschitz regularity
of optimal transport maps obtained by the second author and Juillet in [23]. To recall this result, we
need to introduce some notations and definitions. We will denote by PpRdq the set of Borel probability
measures on Rd and by PkpRdq, k ¥ 1, the subset of PpRdq of probability measures having a finite
moment of order k. The quadratic Kantorovich distance W2 is defined for all µ, ν P P2pRdq as follows:

W 2
2 pµ, νq � inf

πPCpµ,νq

»
|x� y|2 πpdxdyq,

where | � | denotes in all the paper the standard Euclidean norm and Cpµ, νq is the set of couplings
between µ and ν, that is to say the set of probability measures on Rd�Rd such that πpA�Rdq � µpAq
and πpRd � Bq � νpBq, for all Borel sets A,B of Rd. Finally, if η1, η2 P P1pRdq, one says that η1 is
dominated by η2 for the convex order if

³
f dη1 ¤

³
f dη2 for all convex function f : Rd Ñ R. In this

case, we write η1 ¤c η2. With these notations in hand, the variational characterization of [23] reads
as follows:

Theorem 2. Let µ, ν P P2pRdq ; the following assertions are equivalent:

(i) There exists a continuously differentiable and convex function φ : Rd Ñ R such that ∇φ is
1-Lipschitz and ν � ∇φ#µ,

(ii) For all η P P2pRdq such that η ¤c ν,

W2pν, µq ¤W2pη, µq.

In other words the Brenier map between µ and ν is a contraction if and only if ν is the closest point
to µ among all probability measures dominated by ν in the convex order. We will give an alternative
proof of this theorem in Section 4 in the particular case where the support of ν is convex (which is
enough for our purpose here) using Kantorovich duality and variational arguments.

Our strategy to recover Theorem 1 is thus to show the following monotonicity property of the W2

distance: if µ and ν satisfy the assumptions of Theorem 1, it holds

(1) W2pν, µq ¤W2pη, µq, @η ¤c ν.

For that purpose, we will establish a similar inequality at an information theoretic level replacing W2

by the so called entropic transport cost T ε
H (presented in details in the next section) that is defined

in terms of the minimization of the relative entropy between π and a reference measure Rε involving
some small noise parameter ε ¡ 0. We will prove the following monotonicity property of the entropic
cost:

(2) T ε
Hpν, µq ¤ T ε

Hpη, µq

for all η ¤c ν with a finite Shannon information. As observed by Mikami [36] and extensively developed
by Léonard [33, 34] the zero noise limit of εT ε

H is 1
2W

2
2 . Thus letting εÑ 0 in (2) will give (1).

As mentioned above, the Caffarelli contraction theorem has a lot of applications in the field of
geometric and functional inequalities. We refer the interested reader to [19, 20, 9, 8] for some direct
applications of entropic costs, Schrödinger bridges and entropic interpolations in this field.

The paper is organized as follows. Section 2 introduces entropic transport costs and the main
results of the paper. Section 3 gives proofs of these results. Section 4 presents the alternative proof
of Theorem 2.
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2. Entropic transport costs and main results

2.1. Entropic costs and their zero-noise limit. Consider the classical Ornstein-Uhlenbeck process
pZtqt¥0 on Rd, defined by the following stochastic differential equation:

dZt � �1

2
Zt dt� dWt, t ¥ 0,

where pWtqt¥0 is a standard d dimensional Brownian motion and Z0 � γd. As it is well known, the
process Z admits the following explicit representation

Zt � Z0e
�t{2 � e�t{2

» t
0

es{2 dWs, t ¥ 0.

The joint law of pZ0, Zεq will be denoted by Rε. It is therefore given by

Rε � Law
�
X,Xe�ε{2 �

?
1� e�εY

	
,

with X,Y two independent standard Gaussian random vectors on Rd. In other words,

Rεpdxdyq � γdpdxqrεxpdyq,
where x ÞÑ rεx is the probability kernel defined by rεx � N pxe�ε{2, p1� e�εqIdq.

Recall that the relative entropy of a probability measure α with respect to another probability
measure β on some measurable space pX ,Aq is defined by

Hpα|βq �
»

log

�
dα

dβ



dα,

if α is absolutely continuous with respect to β. If this is not the case, one sets Hpα|βq � �8. The
relative entropy is a non-negative quantity that vanishes only when the two probability measures are
equal, this is why it is often called Kullback-Leibler distance (even though it is not a true distance).

Definition 3 (Entropic transport cost). For all probability measures µ, ν on Rd, the entropic transport
cost associated to Rε is defined by

T ε
Hpµ, νq � inf

πPCpµ,νq
Hpπ|Rεq.

As shown by Mikami, Léonard and others [36, 33] the zero noise limit of εT ε
H is 1

2W
2
2 . At a heuristic

level, this phenomenon can be easily understood from the following identities:

εHpπ|Rεq � ε

»
log

�
dπ

dx



dπ � ε

»
log

�
dRε

dx



dπ

� ε

»
log

�
dπ

dx



dπ � ε

2p1� e�εq
»
|y � e�ε{2x|2 πpdxdyq � ε

2

»
|x|2 µpdxq � cpεq,

where cpεq Ñ 0 (and is independent of µ, ν, π). So for small ε, minimizing π ÞÑ Hpπ|Rεq amounts to
minimizing π ÞÑ 1

2

³ |x� y|2 πpdxdyq.
In the sequel we will use the following result, which can be easily deduced from a general convergence

theorem due to Carlier, Duval, Peyré and Schmitzer [5, Theorem 2.7]. We will say that a probability
measure η is of finite (Shannon) entropy if it is absolutely continuous with respect to the Lebesgue

measure and if
³

log
�
dη
dx

	
dη is finite. Note that, if η P P2pRdq, then it is of finite entropy if and only

if Hpη|γdq   �8.
Theorem 4 (Carlier et al. [5]). Suppose that µ, ν P P2pRdq are of finite entropy. Then, it holds

εT ε
Hpµ, νq Ñ

1

2
W 2

2 pµ, νq as εÑ 0.
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We state now a technical lemma that will be needed to apply Theorem 4 in our framework:

Lemma 5. If µ and ν satisfy the assumptions of Theorem 1, then they are of finite entropy.

Proof of Lemma 5. Let us first show that the probability measure µ has finite entropy. Since µ has
a finite second moment, it is enough to show that Hpµ|Lebq   �8, which amounts to show that
V is µ integrable. Since V is bounded from below by some affine function, it is clear that rV s� is
µ integrable. Moreover, since the convex function V is such that

³
eV pxq γdpdxq � 1, this implies

according to [22, Lemma 2.1] that rV s�pxq ¤ |x|2

2 , for all x P Rd, and so rV s� is also µ integrable.
Similarly, to see that Hpν|γdq   �8, it is enough to show that W is ν integrable. On the one hand,³rW s� dν � ³ �

logpe�W qe�W �
�
dγd ¤ 1

e . On the other hand, rW s� is ν integrable since W is bounded

from below by some affine function. �

2.2. Entropic cost in the framework of Caffarelli theorem. As explained above, the key step
in our approach consists in showing that on the set of probability measures dominated by ν in the
convex order, the closest point to µ for the entropic cost distance is ν itself (when ν satisfies the
assumptions of Theorem 1).

Theorem 6. Let µ and ν satisfy the assumptions of Theorem 1. Additionally assume that V is
bounded from below. If η is of finite entropy and such that η ¤c ν, then for all ε ¡ 0

T ε
Hpµ, ηq ¥ T ε

Hpµ, νq.

Let us admit Theorem 6 for a moment and complete the proof of Theorem 1, which will also use
the following Lemma:

Lemma 7. Let νpdxq � e�W pxq γdpdxq with W : Rd Ñ R Y t�8u convex and η ¤c ν. Assume
furthermore that ν has compact support. Define, for all θ P p0, π{2q,

νθ � LawpX cos θ � Z sin θq and ηθ � LawpY cos θ � Z sin θq,

where X � ν, Y � η and Z independent of X,Y and such that the law α of Z is given by
αpdzq � 1

C1B γdpdzq where B is the Euclidean unit ball and C a normalizing constant. Then, for all
θ P p0, π{2q,

(1) the probability νθ has a density of the form e�Wθ with respect to γd, with Wθ : Rd Ñ RYt�8u
convex,

(2) the probability measures νθ and ηθ are compactly supported,
(3) it holds ηθ ¤ νθ,
(4) the probability ηθ has finite entropy.

Proof. The density fθ of νθ is given by

fθpxq � 1

C 1

»
B

e�Wp x�sin θy
cos θ qe� |x�sin θy|2

2 cos2 θ e�
|y|2

2 dy,

where C 1 is a normalizing constant. A simple calculation shows that

e
|x|2

2 fθpxq � 1

C 1

»
B

e�Wp x�sin θy
cos θ qe� | sin θx�y|2

2 cos2 θ dy

and, according to Prekopa Theorem [39], the right hand side is log-concave, which completes the proof
of Item (1). The proofs of Items (2) and (3) are straightforward and left to the reader. The density of

ηθ is gθpxq � 1
C

³
e�

| cos θy�x|2

2 sin2 θ 1B

�
cos θy�x

sin θ

	
ηpdyq and so gθ ¤ 1

C . On the other hand, gθ log gθ ¥ �1{e.
Since the support of ηθ is compact, one sees that gθ log gθ is integrable and so ηθ has finite entropy. �
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We shall now show give the proof of Theorem 1:

Proof of Theorem 1. Let us temporarily assume that V is bounded from below. According to Lemma
5, µ and ν have finite entropy. So using Theorem 4, one concludes by letting ε Ñ 0 that for all
compactly supported probability measures ν of the form νpdxq � e�W pxq γdpdxq, with W : Rd Ñ
RY t�8u convex, it holds

W2pµ, νq ¤W2pµ, ηq
for all η of finite entropy and such that η ¤c ν. Now, fix some compactly supported ν0 of the form
ν0pdxq � e�W0pxq γdpdxq, with W0 : Rd Ñ R Y t�8u convex and let us show that the inequality (1)
holds for any η ¤c ν0. Take η ¤c ν0 and define, for all θ P p0, π{2q,

νθ � LawpX cos θ � Z sin θq and ηθ � LawpY cos θ � Z sin θq,

where X � ν0, Y � η and Z is independent of X and Y and has density 1
C1Bpxqe�

|x|2

2 , where B is

the Euclidean unit ball. According to Lemma 7, νθ is compactly supported and of the form e�Wθγd,
with Wθ convex, ηθ is of finite entropy and ηθ ¤c νθ. Therefore, it holds W2pµ, νθq ¤ W2pµ, ηθq.
Letting θ Ñ 0 gives W2pµ, ν0q ¤ W2pµ, ηq for all η ¤c ν0, which, according to Theorem 2, completes
the proof when V is bounded from below.

Finally, let us remove the assumption that V is bounded from below. Since V is convex, it is
bounded from below by some affine function. Thus there exists some a P Rd such that x ÞÑ V pxq�a �x
is bounded from below. Consider the probability measure µ̃ defined as the push forward of µ under
the translation x ÞÑ x � a. An easy calculation shows that the density of µ̃ with respect to γd is
CeV px�aq�a�px�aq, with C a normalizing constant, and so µ̃ satisfies our assumptions. Therefore,
there exists a continuously differentiable convex function φ̃ : Rd Ñ R such that ∇φ̃ is 1-Lipschitz and
ν � ∇φ̃#µ̃. Setting φpxq � φ̃px� aq, x P Rd, one gets ν � ∇φ#µ which completes the proof. �

Before proving Theorem 6, let us informally explain why one can guess the statement is easier to
prove at the level of entropic cost than directly for the Wasserstein distance. If we consider the plain
relative entropy, we have the variational formula

Hpρ|µq � sup

»
f dρ� log

»
ef dµ,

where the supremum runs over the set of functions f such that
³
ef dµ   �8. Moreover, equality is

achieved for f � logpdρ{dµq. Hence, taking f � �pV �W q, gives

Hpρ|µq ¥
»
�pV �W q dρ ¥

»
�pV �W q dν � Hpν|µq

as soon as ρ ¤c ν. So this trivial bound hints at the fact that comparison is easier for entropies when
we have a log concavity condition on the relative density.

To prove Theorem 6, we need to know more about the optimal coupling π for T ε
Hpµ, νq. The

following is classical in entropic transport literature and goes back to the study of the so called
Schrödinger bridges [41].

Proposition 8. Let µ, ν P P2pRdq be such that Hpµ|γdq   �8 and Hpν|γdq   �8.

(1) There exists a unique coupling πε P Cpµ, νq such that

T ε
Hpµ, νq � Hpπε|Rεq   �8.

(2) There exist two measurable functions fε, gε : Rd Ñ R� such that log fε P L1pµq, log gε P L1pνq
and

πεpdxdyq � fεpxqgεpyqRεpdxdyq.
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Sketch of proof. (1) We equip the set PpRd � Rdq with the usual topology of narrow convergence.
For this topology, the function π ÞÑ Hpπ|Rεq is lower-semicontinuous and the set Cpµ, νq is compact.
Therefore, the function Hp � |Rεq attains its minimum at some point πε of Cpµ, νq. It is easily checked
that the coupling π0 � µ b ν is such that Hpπ0|Rεq   �8, so Hpπε|Rεq   �8. Uniqueness comes
from the strict convexity of Hp � |Rεq. For the proof of (2) we refer to [12, Corollary 3.2]. In the special
case where µ and ν satisfy our log-convexity/concavity assumptions we will give a self-contained proof
in Section 3. �

In the setting of Theorem 1, it turns out that much more can be said about the functions f and g.
This is explained in the following result, which seems of independent interest.

Theorem 9. With the same notation as in Proposition 8, let µ be a probability measure of the form
µpdxq � eV pxqγdpdxq with a finite second moment and ν be a compactly supported probability measure
on Rd of the form νpdxq � e�W pxq γdpdxq, with V,W convex and V bounded from below. There exist
a log-convex function fε : Rd Ñ r1,�8q and a log-concave function gε : Rd Ñ r0,�8q such that the
unique optimal coupling πε P Πpµ, νq is of the form πεpdxdyq � fεpxqgεpyqRεpdxdyq. Moreover, the
function log fε is integrable with respect to µ and the function log gε is integrable with respect to ν
and it holds

T ε
Hpµ, νq � Hpπε|Rεq �

»
log fε dµ�

»
log gε dν.

We now give a brief heuristic explanation as to why one can expect this statement to imply
the Caffarelli contraction theorem. Informally, from the convergence of the entropic cost to the
Wasserstein distance, we expect from the dual formulation that ε log f converges to |x|2{2�ϕ (up to
some additive constant), where ϕ is a potential giving rise to the optimal transport map T � ∇ϕ.
However convexity is preserved by pointwise convergence, so we expect |x|2{2� ϕ to also be convex.
But this is equivalent to ∇ϕ being 1-Lipschitz, since the eigenvalues of the Hessian of ϕ must then
be bounded by 1. Theorem 2 will allow us to avoid having to prove convergence of ε log f to a
Kantorovich potential.

Section 3 is essentially devoted to the proof of Theorem 9. With Theorem 9 in hand, the proof of
Theorem 6 becomes almost straightforward:

Proof of Theorem 6. Recall the following duality inequality for the relative entropy : if α, β are two
probability measures on a measurable space pX ,Aq such that Hpα|βq   �8, then for any measurable
function h : X Ñ R such that

³
eh dβ   �8, it holds

³rhs�dα   �8 and

(3) Hpα|βq ¥
»
h dα� log

�»
eh dβ




Let π P Cpµ, ηq be a coupling between µ and some probability η ¤c ν such that Hpπ|Rεq   �8 ;
applying the inequality above to α � π, β � Rε and hpx, yq � log pfεpxqgεpyqq, x, y P Rd gives

Hpπ|Rεq ¥
»

log fεpxq � log gεpyqπpdxdyq

�
»

log fεpxqµpdxq �
»

log gεpyq ηpdyq

¥
»

log fεpxqµpdxq �
»

log gεpyq νpdyq
� Hpπε|Rεq � T ε

Hpµ, νq,
where the second inequality comes from the fact that log gε is a concave function and η ¤c ν. Opti-
mizing over π, gives the inequality T ε

Hpµ, ηq ¥ T ε
Hpµ, νq and completes the proof. �
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To conclude this section, we mention some perspectives. The most natural question is whether
this scheme of proof can be adapted to establish a version of Caffarelli’s theorem in other settings
than Rd, such as on manifolds or in free probability [24]. See [38] for some motivations in analysis
and geometry. See [21] for a study of Schrödinger’s problem in a wider geometric setting. Another
question is about integrated or non-local quantitative regularity estimates, such as those in [31, 32].
The role of 1-Lipschitz bounds in Theorem 2 is very specific, we do not know if there is an analogue
of that equivalence adapted to other types of regularity bounds. However, it could be possible to
prove stable a priori bounds on ε log fε and pass to the limit. Of particular interest is whether we
can establish integrated gradient bounds for non-uniformly convex potentials, since such estimates
can still be used to establish Poincaré inequalities [37, 30]. Finally, [14] proves a rigidity/stability
result for the Caffarelli contraction theorem, and it would be interesting to find a way to improve the
quantitative bounds.

3. Proof of the main results

This section contains the material needed to prove Theorem 6. The ideas developed here are
adapted from a paper by Fortet [16]. We warmly thank Christian Léonard for mentioning us this
paper and explaining to us the ingredients of Fortet’s proof. Fortet’s work was recently revisited in
[15, 35].

We will denote by P ε the Ornstein-Uhlenbeck semi-group at time ε defined for all non-negative
measurable function ψ by

P εψpxq � ErψpZεq|Z0 � xs � 1

p2πqd{2
1

p1� e�εqd{2
»
Rd
ψpy � e�ε{2xqe�

|y|2

2p1�e�εq dy, x P Rd.

Suppose that fε, gε are measurable non-negative functions such that πεpdxdyq � fεpxqgεpyqRεpdxdyq
belongs to Cpµ, νq. Then, writing the marginals condition, one sees that fε and gε are related to each
other by the identities: for all x, y P Rd
(4) fεpxqP εgεpxq � eV pxq and gεpyqP εfεpyq � e�W pyq.

These relations suggest to introduce the functional Φε defined as follows: for all measurable function
h : Rd Ñ RY t�8u,

Φεphq � V � log

�
P ε

�
e�W

1

P εpehq




.

With this notation, a couple pfε, gεq satisfies (4) if and only if gε � e�W 1
P εpfεq and fε � eh

ε

with hε

such that

hε � Φεphεq.
This fixed point equation suggests that the unknown function hε could be obtained as the limit when
nÑ �8 of a sequence phnqn¥0 satisfying the recursive scheme

(5) hn�1 � Φεphnq, n ¥ 0

and initialized with some function h0. This fixed point scheme is actually at the core of the use of
Sinkhorn’s algorithm to numerically approximate optimal transport via entropic regularization [13, 2].

Remark 10. Note that we allow the argument h to which we apply Φε to take the value �8. The
heat flow is nonetheless well defined, since we only apply it to eh, which is nonnegative. Of course,
as soon as h takes infinite value on a set of positive mass, Φεphq takes value �8 everywhere, and the
function that takes value �8 everywhere is a trivial fixed point. Part of the difficulty in the proof of
Theorem 15 below will be to show that the fixed point we obtain is not the trivial one, but is finite
everywhere.
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The convexity of hε can then be established if we can initiate this fixed point scheme (5) with some
convex initial data h0, thanks to the following key result:

Lemma 11. If h : Rd Ñ RY t�8u is convex, then Φεphq is also convex.

Proof. This property is inherited from the following classical properties of P ε :


 If f is log-convex, then P εpfq is log-convex. This simply follows from Hölder inequality.

 If g is log-concave, then P εpgq is log-concave. This follows from the fact that the set of log-

concave functions is stable under convolution which is a well known consequence of Prekopa
Theorem [39].

�

The line of reasoning sketched above is essentially the one adopted in the proof of Theorem 9,
except that the recurrence scheme (5) needs to be properly modified in order to force its convergence
(this modification is the same as the one proposed by Fortet in [16]).

Remark 12. In the compact setting, the map Φε is actually a contraction with respect to a well-
chosen metric, see for example [18, Lemma 1] or [6] (following the earlier ideas of [17] in the discrete
setting). This would ensure that the fixed point must belong to any stable subspace. Here, we work in
a noncompact setting (µ has non-compact support) and it seems the map is globally only 1-Lipschitz
at that level of generality. One could however expect that it remains a contraction on a suitable stable
subspace of convex functions.

Remark 13. A natural question is whether our scheme of proof can be used directly at the level of the
Kantorovich dual formulation of optimal transport, rather than on the regularized version. The answer
seems to be no, as in the limit while the minimizers in the dual formulation of entropic transport,
suitably rescaled, converge to the Kantorovich potentials, the fixed point problem becomes degenerate in
the limit, and only selects so-called c-convex functions (with the cost here being the quadratic distance),
so we lose uniqueness. Indeed, there is no known fixed point scheme similar to (5) for Kantorovich
potentials, which is why Sinkhorn’s algorithm is only used to numerically approximate the regularized
problem [13].

Before moving on to the proof, let us present two other essential properties of Φε.

Lemma 14.

(1) The map Φε is monotone: h ¤ k ñ Φεphq ¤ Φεpkq.
(2) For any measurable h : Rd Ñ R, it holds»

exp phpxq � Φεphqpxqq dµ ¤ 1,

with equality if h is bounded from above.

Proof. The first point is straightforward. Let us prove the second point. Since the operator P ε is
symmetric in L2pγdq, for any function h : Rd Ñ R it holds»

eh^a�Φεphq dµ �
»
eh^aP ε

�
e�W

1

P εpehq


dγd �

»
P ε

�
eh^a

�
e�W

1

P εpehq dγd.

Letting a Ñ �8, one gets by monotone convergence
³
eh�Φεphq dµ � ³

tP εpehq �8u
e�W dγd which

gives the claim. �
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The existence of a coupling of the desired form can be established under more general conditions
on µ and ν:

Theorem 15. Let µ be a probability measure of the form µpdxq � eV pxqγdpdxq with V : Rd Ñ R convex
and bounded from below, and let ν be a probability measure on Rd of the form νpdxq � e�W pxq γdpdxq,
with W : Rd Ñ R Y t�8u a convex function such that tW   �mu is bounded for m � infRd V ¤ 0.
There exist a log-convex function fε : Rd Ñ r1,�8q and a log-concave function gε : Rd Ñ r0,�8q
such that the measure πε defined by πεpdxdyq � fεpxqgεpyqRεpdxdyq belongs to Cpµ, νq.

Proof of Theorem 15. Let us show that there exists a convex function h̄ : Rd Ñ R� such that Φεph̄q �
h̄. Then, defining fε � eh̄ and gε � e�V {P εpfεq, we see that fε is log-convex, gε is log-concave (we
use again the fact that P ε preserves log-convexity) and satisfy (4).

Let us define by induction the sequence phnqn¥0 as follows: h0 � 0 and for all n ¥ 0

(6) hn�1 � rΦεphnqs� ^ n.

By construction, note that hn takes values in r0, n� 1s. Let us show by induction that the sequence
phnqn¥0 is non-decreasing. First observe that h1 � 0 � h0 and so in particular h0 ¤ h1. According
to Item (1) of Lemma 14, the operator Φε is non-decreasing. Therefore, if hn�1 ¥ hn for some n ¥ 0,
then

hn�2 � rΦεphn�1qs� ^ pn� 1q ¥ rΦεphnqs� ^ pn� 1q ¥ rΦεphnqs� ^ n � hn�1.

Let us denote by h8 the pointwise limit of hn as nÑ8. The function h8 takes values in R�Yt�8u.
Let us show that h8 solves the following fixed point equation

(7) h8 � rΦεph8qs� .

Indeed, by monotone convergence, P εpehnq Ñ P εpeh8q. Then, by dominated convergence,

P ε
�
e�W

1

P εpehnq


Ñ P ε

�
e�W

1

P εpeh8q



which implies that hn Ñ rΦεph8qs� and gives (7). Note that the use of the dominated convergence

theorem is justified by the fact that P εpehnq ¥ 1 since hn ¥ 0 and the fact that e�W is easily seen to
bounded from above.

We shall now prove that Φεph8qpxq   �8 for all x P Rd. We shall proceed by contradiction,
and show that if h8 took an infinite value somewhere, then our fixed point procedure would then
terminate in a finite number of steps. This would imply by contradiction that h8 cannot take an
infinite value, since after a finite number of steps the function hn is necessarily bounded from above,
by definition. So let us assume, that there exists some xo P Rd such that Φεph8qpxoq � �8. This
easily implies that P εpeh8q � �8 almost everywhere, which in turn implies that Φεph8q � 8. Since
h8 ¥ Φεph8q, one concludes also that h8 � �8. Now let us show that there exists n0 such that for
all n ¥ n0

(8) inf
xPRd

Φεphnqpxq ¥ 0.
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For any x P Rd, it holds (denoting by C � p2πqd{2p1� e�εqd{2 and by m � infRd V )

P ε
�
e�W

1

P εpehnq


pxq � 1

C

»
Rd
e�W pyq 1

P εpehnq pyqe
� |y�e�ε{2x|2

2p1�e�εq dy

� 1

C

»
tW¤�mu

e�W pyq 1

P εpehnq pyqe
� |y�e�ε{2x|2

2p1�e�εq dy

� 1

C

»
tW¡�mu

e�W pyq 1

P εpehnq pyqe
� |y�e�ε{2x|2

2p1�e�εq dy

¤ 1

C

»
tW¤�mu

e
� |y�e�ε{2x|2

2p1�e�εq dy max
zPtW¤�mu

e�W pzq 1

P εpehnq pzq.

� em

C

»
tW¡�mu

e
� |y�e�ε{2x|2

2p1�e�εq dy,

where we used the fact that P εpehnq ¥ 1, since hn ¥ 0. The sequence of functions 1
P εpehn q

is

a non-increasing sequence of continuous functions converging to 0. Therefore, according to Dini’s
Theorem, the convergence is uniform on the compact set K � tW   0u. Since W is convex, it is
bounded from below on K. Therefore, there exists n0 such that maxzPK e

�W pzq 1
P εpehn q

pzq ¤ em for

all n ¥ n0. Plugging this inequality into the inequality above, one easily gets (8). Now, according
to (8), there exists some no such that Φεphn0

q ¥ 0. Therefore hno�1 � Φεphnoq ^ no ¤ Φεphno�1q,
since the sequence phnq is increasing and the operator Φε is monotone. Since hn0�1 is bounded, Item
(2) of Lemma 14 yields

³
ehno�1�Φεphno�1qdµ � 1, which implies that hno�1 � Φεphno�1q. Therefore,

h8 � hno�1, which necessarily contradicts the fact that h8 � �8, since by definition hno�1 is
bounded from above. So there is a contradiction, and therefore h8 must be finite everywhere.

At this point, one could show that h8 is actually a fixed point of Φε, and not just a solution to
(7), but this is not going to be necessary for us.

Now let k0 � h��8 be the convex regularization of h8 (which is well defined since h8 is bounded
from below). By definition k0 ¤ h8 and since h8 ¥ 0, it holds k0 ¥ 0. Define by induction pknqn¥1

by kn�1 � maxpΦεpknq; k0q. Since according to Lemma 11 Φε preserves convexity and k0 is convex,
kn is convex for all n. The sequence kn is non-decreasing and satisfies kn ¤ h8 for all n. Therefore,
kn converges pointwise to some k8, which is also convex and finite valued. Reasoning as above one
sees that k8 � maxpΦεpk8q; k0q and so in particular k8 ¥ Φεpk8q. According to Item (2) of Lemma
14, it holds

³
ek8�Φεpk8q dµ ¤ 1. Since k8 ¥ Φεpk8q, the function ek8�Φεpk8q is bounded from below

by 1. Therefore, k8 � Φεpk8q almost everywhere. But since both functions are convex, equality
actually holds everywhere, and k8 is a convex fixed point of Φε. Setting h̄ � k8 completes the proof.

Due to the uniqueness of fixed points of the Schrödinger problem up to multiplicative constants
[35, Proposition 5.1], solutions to the fixed point equation h � Φεphq are unique up to an additive
constant. Therefore, a posteriori we actually have k8 � h8, and thus the original function h8 was
actually itself convex, and the sequence pknq is constant. �

Proof of Theorem 9. First, let us note that Hpµ b ν|Rεq   �8. Since µ and ν have finite sec-
ond moment, this is easily seen to be equivalent to Hpµ|γdq   �8 and Hpν|γdq   �8, which
is true according to Lemma 5. According to Theorem 15, there exists a coupling πεpdxdyq �
fεpxqgεpyqRεpdxdyq P Cpµ, νq such that fε is log-convex and gε is log-concave. It remains to show
that this coupling is optimal for T ε

Hpµ, νq. Since P εfεpyqgεpyq � e�W pyq, y P Rd, one sees that
log gεpyq � �W pyq � logP εfεpyq. The function logP εfε is bounded continuous on the support of ν
and W is integrable with respect to ν. Therefore, log gε is integrable with respect to ν.
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On the other hand, since log fε ¥ 0, the integral
³

log fε dµ makes sense in r0,�8s. Let π P Cpµ, νq
be a coupling such that Hpπ|Rεq   �8 (this set is non empty, since it contains µ b ν). Applying
Inequality (3) with α � π, β � Rε and hpx, yq � log fεpxq � log gεpyq, x, y P Rd, gives

Hpπ|Rεq ¥
»

log fεpxq � log gεpyqπpdxdyq �
»

log fεpxqµpdxq �
»

log gεpyq νpdyq,

which shows that log fε is integrable with respect to µ. A simple calculation shows that

Hpπε|Rεq �
»

log fεpxqµpdxq �
»

log gεpyq νpdyq,

which shows its optimality. �

4. Variational proof of Theorem 2

The goal of this section is to give an alternative proof of Theorem 2. The original proof in [23]
uses a weak version of optimal transport as an intermediary, but we give here a new proof relying
only on the variational problem solved by the Brenier map. However, we need to restrict the proof
to the case where ν is absolutely continuous with respect to Lebesgue (and µ too but this is hardly a
restriction when we assume that a Brenier map exists), with its support being convex. Note that for
the purpose of proving the Caffarelli contraction theorem, these assumptions are not a restriction.

Let us recall some classical facts about quadratic transport that will be used in the proof (see
[42, 43] for proofs and more general statements). If µ, ν P P2pRdq, the quadratic transport cost 1

2W
2
2

admits the following dual formulation due to Kantorovich:

(9)
1

2
W 2

2 pµ, νq � sup
ϕ,ψ

"» |x|2
2
� ϕpxqµpdxq �

» |y|2
2
� ψpyq νpdyq

*
,

where the supremum runs over couples of convex conjugate functions pϕ,ψq, that is to say that
ϕ,ψ : Rd Ñ R Y t�8u are convex, lower semi-continuous and such that ψ � ϕ� and ϕ � ψ�, where
we recall that the Legendre transform h� of a function h : Rd Ñ RY t�8u is defined by

h�pyq � sup
xPRd

tx � y � hpxqu, @y P Rd.

A classical result in optimal transport tells moreover that the supremum in (9) is always attained. If
pϕ,ψq is such a dual optimizer, we will say that ϕ (resp. ψ) is a transport potential from µ to ν (resp.
ν to µ). This terminology is justified by the fact that if µ is absolutely continuous with respect to
Lebesgue measure, then according to Brenier theorem, if ϕ is a transport potential from µ to ν, the
map ∇ϕ (which is well defined µ almost surely) is (the µ almost surely unique) optimal transport map
between µ and ν, i.e ν � ∇ϕ#µ and W 2

2 pµ, νq �
³ |x�∇ϕpxq|2 µpdxq. Finally, if ν is also absolutely

continuous with respect to Lebesgue measure, then ∇ψ is the optimal transport map between ν and
µ and it holds

∇ψ �∇ϕpxq � x and ∇ψ �∇ϕpyq � y

for µ almost every x and ν almost every y.

For reader’s convenience, let us reformulate Theorem 2 in a slightly different form and with the
extra assumptions mentioned above :

Theorem 16. Let µ, ν P P2pRdq be absolutely continuous with respect to Lebesgue measure and
suppose that ν has a convex support. The following are equivalent:

piq There exists a transport potential ϕ : Rd Ñ R from µ to ν which is continuously differentiable
on Rd and such that ∇φ is 1-Lipschitz on Rd,



12 MAX FATHI, NATHAEL GOZLAN, AND MAXIME PROD’HOMME

piiq There exists a transport potential ψ : Rd Ñ R Y t�8u from ν to µ such that the function

Rd Ñ RY t�8u : x ÞÑ ψpxq � |x|2

2 is convex.

piiiq For all η P P2pRdq such that η ¤c ν,

W2pν, µq ¤W2pη, µq.

The equivalence between piq and piiq uses the following classical fact of convex analysis:

ϕ C1 and ∇ϕ 1-Lipschitz ðñ ϕ� � | � |
2

2
is convex,

see [27, Theorem E 4.2.1] or [23, Lemma 2.1]. It turns out that condition piiq will be easier to handle
than condition piq.

Proof of Theorem 16, piiq ñ piiiq. Assume ψ is a transport potential from ν to µ such that ψ � | � |2

2
is convex and let ϕ � ψ�. For any η ¤c ν, it holds

1

2
W 2

2 pµ, νq �
» |x|2

2
� ϕpxqµpdxq �

» |y|2
2
� ψpyq νpdyq

¤
» |x|2

2
� ϕpxqµpdxq �

» |y|2
2
� ψpyq ηpdyq

¤ 1

2
W 2

2 pµ, ηq,

where the first equality comes from the optimality of pϕ,ψq, the second inequality from the fact that

η ¤c ν and the concavity of | � |2

2 � ψ and the third inequality from Kantorovich duality. �

For any probability measure ρ P P2pRdq, we will denote from now on as

Cρ :� tη P P2pRdq : η ¤c ρu

the set of all probability measures which are dominated by ρ in the convex order. Note that this set
is geodesically convex in pP2pRdq,W2q.

In order to prove the converse implication piiiq ñ piiq, we will proceed by contradiction and show
that if piiq is not true then one can construct a competitor η P Cν with a smaller Wasserstein distance
to µ. For that purpose, we will use the following simple localization lemma.

Lemma 17. Let µ, ν P P2pRdq and suppose that T : Rd Ñ Rd is an optimal transport map from µ to
ν. Let A � Rd be a Borel set such that νpAq ¡ 0, define νA as the renormalized restriction of ν to A:

νA :� ν
 
A

νpAq and µA as the renormalized restriction of µ to T�1pAq: µA :� µ
 
T�1pAq
νpAq . Suppose that

there exists ηA P CνA such that W2pµA, ηAq  W2pµA, νAq. Then the probability measure η defined by
η � ν

 
Ac � νpAqηA is such that η P Cν and W2pµ, ηq  W2pµ, νq.

Proof. It is clear that η ¤c ν. Let us show that η is closer to µ than ν. For the sake of simplicity,
we will assume that there exists an optimal transport map S between µA and ηA. According to [43,
Theorem 4.6], the map T is still the optimal transport map from µA to νA. The map R defined by
Rpxq � Spxq if x P T�1pAq and Rpxq � T pxq if x P T�1pAqc is a transport map between µ and η (not
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necessarily optimal) and it holds:

W 2
2 pµ, ηq ¤

»
|x�Rpxq|2 µpdxq

� µpT�1pAqq
»
|x� Spxq|2 µApdxq �

»
T�1pAqc

|x� T pxq|2 µpdxq

  µpT�1pAqqW 2
2 pµA, νAq �

»
T�1pAqc

|x� T pxq|2 µpdxq

� µpT�1pAqq
»
|x� T pxq|2 µApdxq �

»
T�1pAqc

|x� T pxq|2 µpdxq

�W 2
2 pµ, νq.

�

Before completing the proof of Theorem 16, let us state a lemma about strongly convex functions.
Given a convex function f , we will denote dompfq � tx P Rd : fpxq   �8u the domain of f .

Lemma 18. Let f : Rd Ñ R Y t�8u be a lower semi-continuous convex function such that dompfq
has a non-empty interior. The function f is such that f � | � |2

2 is convex if and only if for all
x, y P int dompfq where f is differentiable it holds

(10) p∇fpxq �∇fpyqq � px� yq ¥ |x� y|2.

Note that if f is continuously differentiable, the conclusion of the lemma is straightforward.

Proof of Lemma 18. Let us denote by D � dompfq. According to [28, Theorem 6.1.2], f � | � |2

2 is
convex if and only if for all x, y P D, it holds

(11) px� yq � pu� vq ¥ |x� y|2, @u P Bfpxq, @v P Bfpyq,
where, we recall that for any x P D, we denote by Bfpxq the sub-gradient of the convex function f at
point x which is defined as the set of all vectors u P Rd such that fpzq ¥ fpxq � u � pz � xq, for all
z P Rd. We recall also that when f is differentiable at x (which is true for Lebesgue almost every x in
the interior of D) then Bfpxq � t∇fpxqu. Therefore, if f satisfies (11) it satisfies (10).

Let us show the converse. According to [40, Theorem 25.6 ], for any a P D, it holds

Bfpaq � ConvpSpaqq �Rpaq,
where Rpaq is the normal cone to D at a, i.e

Rpaq � th P Rd : h � pz � aq ¤ 0, @z P Du
and Spaq is the set of vectors u such that there exists a sequence of points ak P intD where f is
differentiable such that ak Ñ a and ∇fpakq Ñ u as k Ñ8. Let x, y P D and u P Bfpxq and v P Bfpyq,
with decomposition u � u1 � h, v � v1 � k with u1 P ConvpSpxqq, v1 P ConvpSpyqq, h P Rpxq and
k P Rpyq. Since px � yq � ph � kq ¥ 0, it is enough to show that px � yq � pu1 � v1q ¥ |x � y|2. By
convexity, it is enough to prove that px� yq � pu1 � v1q ¥ |x� y|2 for all u1 P Spxq and v1 P Spyq. If ak
and bk are sequences converging to x and y respectively in such a way ∇fpakq Ñ u1 and ∇fpbkq Ñ v1,
then according to (10), it holds

p∇fpakq �∇fpbkqq � pak � bkq ¥ |ak � bk|2
and letting k Ñ8 gives the desired inequality. �

We can now move on to the final part of the proof of Theorem 16.
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Proof of Theorem 16, piiiq ñ piiq. Assume that piiq does not hold, that is to say that whenever ψ is

a transport potential from ν to µ then the function ψ � | � |2

2 is not convex. First we want to make
sure that the convexity problem occurs on the support of ν, denoted by Sptpνq in what follows. Take

ψ̃ an arbitrary transport potential from ν to µ. Then, since Sptpνq is closed and convex, the function

ψ defined by ψpyq � ψ̃pyq if y P Sptpνq and ψpyq � �8 otherwise is still convex and lower semi-

continuous. Defining ϕ :� ψ�, one easily sees that ϕ ¤ ψ̃� and so pϕ,ψq is a dual optimizer. In all
what follows we will deal with this special potential ψ.

Since piiq does not hold, Lemma 18 applied with f � ψ shows that there exist two points x0, y0 in
the interior of Sptpνq where f is differentiable and such that

px0 � y0q � p∇fpx0q �∇fpy0qq   |x0 � y0|2.

By continuity of r ÞÑ νpBrpzqq, for z P Sptpνq, we can find two functions rε Ñ 0 and sε Ñ 0 as
ε Ñ 0 such that for all ε ¡ 0, νpBrεpx0qq � νpBsεpy0qq. We then define Aε to be the union of these
two (disjoint) balls:

Aε :� Brεpx0q YBsεpy0q.
Then νAε converges weakly to 1

2δx0 � 1
2δy0 , as ε Ñ 0. Let bε �

³
y νAεpdyq be the barycenter of Aε

with respect to νAε . Then we have that

lim
εÑ0

bε � b :� x0 � y0

2
.

In order to construct a competitor, let us collapse the mass of νAε towards bε using the displacement
interpolant between νAε and δbε

ρεt :� rp1� tqId� tbεs#νAε .
Then it is easily seen that for all t P r0, 1s, ρεt ¤c νAε . Note that we must go towards bε, instead of b
directly, in order to stay in CνAε . As εÑ 0, this will not make a difference.

Let us now compute W2pµAε , ρεt q, where µAε is defined as in Lemma 17, and show that for t and
ε small enough it is strictly less than W2pµAε , νAεq. Note that ρεt is the image of µAε under the map
p1 � tq∇ϕ � tbε which is clearly the gradient of the convex function x ÞÑ p1 � tqϕpxq � tbε � x and is
thus optimal. Therefore,

W 2
2 pµAε , ρεt q �

»
|x� p1� tq∇ϕpxq � tbε|2 µAεpdxq

�W 2
2 pµAε , νAεq � 2t

»
px�∇ϕpxqq � p∇ϕpxq � bεqµAεpdxq � t2

»
|∇ϕpxq � bε|2 µAεpdxq.

So, for any fixed ε ¡ 0, the derivative at t � 0 is thus given by

d

dt |t�0
W 2

2 pµAε , ρεt q � 2

»
px�∇ϕpxqq � p∇ϕpxq � bεqµAεpdxq

=This formula was obtained in [1, Proposition 7.3.6], and is also a particular case of [43, Theorem
23.9] which gives the time derivative of the Wasserstein distance along general curves of probability
measures. Now, our goal is to show that the quantity calculated above is negative for all ε small
enough. Since µAε � ∇ψ#νAε and ∇ϕ �∇ψpyq � y for νAε almost every y, one gets

d

dt |t�0
W 2

2 pµAε , ρεt q � 2

»
p∇ψpyq � yq � py � bεq νAεpdyq.

To conclude, we use the following continuity property of the subgradient : if ψpxq   �8, then for
any δ ¡ 0, there exists r ¡ 0 such that if z P Brpxq then Bψpzq � Bψpxq � Bδp0q (see [28, Theorem
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6.2.4]). Since Bψpx0q � t∇ψpx0qu and Bψpy0q � t∇ψpy0qu, it follows easily that

lim
εÑ0

d

dt |t�0
W 2

2 pµAε , ρεt q � p∇ψpx0q � x0q � px0 � bq � p∇ψpy0q � y0q � py0 � bq

� p∇ψpx0q �∇ψpy0qq � px0 � y0q � |x0 � y0|2   0.

Therefore, for ε and t small enough W2pµAε , ρεt q  W2pµAε , νAεq, which according to Lemma 17 shows
that there exists η P Cν such that W2pµ, ηq  W2pµ, νq and completes the proof. �
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us Fortet’s work and sharing a preliminary version of [35] explaining it, Gabriel Peyré for his lectures
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